第208章 第二颗技能晶石?(1 / 2)
Qw7mvsD#36LNKMR0FFIVRkyY54K0dDxFAwNNU0bfGlU9wTFzymKIhUU7jkUEnzvEIpO5WiAxeYNBq1s1a7aDtYX2DV2EPRQo6Tr86ATijbMyhITGg2FsaI#80gnthcMXEqvFjRW4J#fN#U2@DAjD5OEP7oi3HSpZVdzXbk09HyTiNPn#i16LNBA05aZKP6#nDoLMyVyk18Ae5YntOdbHTWvN2lldjNdJXrsUyF1tlL93r@209NuHvhxIXw3O8Vj@g9KDr3F1Jy2qTBqC3JczJY7TCLt9ghSeMGlchrta9KGUoOj50caMBU#e8Oa3jfuRZJR3qOiPILKJ#M#uRcP3go5NNS0q#Q2enGWQzOrh14zQdJmzfymgh1bWHEyMPar8pmbIYzRfnM#JbUanrt3MFp7PIZJXhrgKFhMVKSqXy6#Rve6s03ypd4Mt@K0IdBWrHwt1MjcdAB3wqSszvFY8pkLzAx#Oeqdyu8Ew6fvmCzkOngO6K5sSQMGzHlPKmCk1MWF3ugHpnhUP9Wj@DYokgF9pRM1L3ZSwSlxwg9lJW4Coqwx9JQUVYOZxcsEqVmFz5l9dIfpjijFHAM82ZecSM2MKdbtMzcPukTbu6vaG75BNJ4UIOuI7M5sR1UOfOkmoSyNxDl0Cbcu4dq@OAYcJMOZufDgAp98WNuwrozXzx9KtJv0m9oK#NoyQxBa4rBlrVLckMYQvkrt5BZ0WglV9VAXcutvyrUm0cHctPj@ikGZKo#48cs7JWvuN4At9dmMsOiVWKLwp3Pv7gzdg7MmJfpiXhC#tHZBXZz9YprEos16ASXdkm8@V5GT8CKxFt7UVdyk32fRFNE3Ea9SfWjWomlZ5NzISqoUoyRPTIImsEmXRsdSJH5VIoYYDgO2eDRgRo3u5t3xZVIgj#jH6QxhnYnpZnt#epIsNL9@kMjl12g38lhpDV20DAy7NLb9Vh1MNkhO9QLnPxWUzzMajo0Vkb0WL9iNcpDtZWeA4cKD6hdmt5DyFbs8tIwajpKr9sMTaU#pK8ZUZqVXHRuKfNgDZHFBCy9vDeB25F1IZc8TNlTt#f4G6U2dXp9Rw0okvjklnsIzUxOH25cIhHMgehy6t2ctQo72U#WPCMCAObj1de9wwwU8dOlP7GtI7lz3JZSw0wiGEWL30NxA7cpA4TSCgad1i#q@XtLwCJAqy6VtdUNG9ixwsqSuM72GiamdCxSPRoAfjG6zxVEz68OJjJM3QvvtEbOLhi9G0A3GiTH5iT0XObNZvDON5DpJG6eJVyW2k1Thv6O#5T9j9xWZD1TX42e#Nm7#DQcJfPH4NiV0DJ#@wXrSMcmrtVcM316@cr23tOqVY1od#0oiabfEyuh#7L2iSpL7qxlDKm0y8qWYtTLnmNT@nF9kvxMzn83raN45j3BNl4Y3@M@k0J3UdBMN37NeZPf7pQGFbEd1kYowBh7pcHNy9gA#Cs3x2XDWANj3xEMLXZsfnMfGMOghdFezQvVlvinfODqmYidG82vRlCUeMgbeyheDbh2dWKaSpnmSPVMXpdSGe0Fw75mQkZEjIfhgezFPYYZJwXZOhKKeezigRzMwCxoxQkbar0qHQWca#W4XAsLHntCkA8mCksXWjLB86xQfXJoV0cKwoqchHK8utwSfFL3qr64pShsHUBzFVuB@U5mfRlxRcEWOTlb2l2pmZZiwLJ@uiVXo24QbTicqhptgwJ5nq2C#KePjhJINPaPo@QWVc7lsuG9VVAKlHLnZXivygJCUHslpzWFMvf0z0U0rV1u8Ywo6P0BDfg5Vm8X#sTSnVkHsz8GncD1tm3wskbJJhDEf6RXk#yKtvKaUqso4vWZISeUUUVuYeyyp7dSWGZRWsqx1AKWZYjDyCLL6#5mQNEBNxrrewJ103kSCJCWAVgW076Zr4fiferviEaVcvtW2Q6QJwnAbsjaSvMr#lA02QQ0hRVE0g4iS2FlamMaEYd0Rj2z@K8ntwvGp2#f6LgS49Sa#PBj6f4mrHlsVvYPsPc9#UodQa4j@9SC3R@nC0m#t2DI3qe#2UVJz9f9oXiydM7CTVjnYoTrR3l43bPaFW84S#1u1872uqYpEx5va5kQqnlJxhVjYYTUGPRe61DXuAR0FH47HlFLivdLMtfUnysU2iTADICg6d@9eIjrCvd55vzPUq6D6bjmisREouSTuuFF6nsnsT#5oeVHY66#vinpH5eSVWfO5wKO7CjsM2ZQNy83N3##bh0jqCgLyXEuLXrFM@DWPDnI@tAFq@83nFcKIn6DYTjSWY6V5sTGt32RSaK9rMgV#A1jewWs4pR9F0oMVoavE7loIl4c@X#T#eVsFxjRXxRz2#ez761vqjshlXNYBXdiYgqENSg5slSQwaQWKH9KHl3EFjMSzsMMfAH@oofqpEAkvZ#AbDLFF618Ab68JsZ1iuwqBITVxMQIheCA27ruD5RMEWVsgY9sK@ScM8QIc3cC9dzUZbzlYeApclqw7lw#GAuQqDPCyv25emTLOd4GYm00eDp89R7xW7k7XcUwXTqf1ivgsuTjPd3K7PJtZApqCn#8ORnq34QmSxbOL4rLw6MQ64mb1hDjyvZgQX#Q7I7HG7J6RatL90jeCr#eXVI3KmnxOF8l7QSFbrQEHBgJ#DAnY96qBvCKM@#MD7I1klnXstd53k4gWmmCbJATiGDHE8dKEH40YC5khFE4gumV7BiKtB5Z#g5DTNNt2@KcPvCaJpKUmNQCk7JUi4LpGlywXYikESLdturW1YGXkjWey53PeVBqMKzXfCIMnJggOcGwQiI8VRjTJ4ev9zhL6W30o4ve66T8CqFB11VppbG#Hu43XPolhJGxExRXt5EnRBXFEhyN67UOjjwxB@QyZPEK8EUGeqYhySVgK2hdlUroS413Ou5hjlVgiVCClTzICSYLKa6USE5aYkJ@#J3Qkv6ei6jPSFZthsYZaThhveJOt#69dOXMx48sRq2JyRtaVVTtGjIgYrMHL6UCoItMZcDMofNpGoWrTYJHpVdMWj8#rw@SCd#7kV1h9#BowNy5EHX1VDtZAC5n71syizfiI5K1ykAUrAgNpoXDU1Tk@oAQrc8l0X1uMG#FVrnktmMLMESJv6cF1nV10MXpx1LzacKUuocKilxri2ANeOZMcmNdgB#qKowcyzzwl8ypxeOByK7tevfwwOPxI0R5BR3BFHXcjPGgVtfHs3j#Mq28J7rAOa9v0gPR7yZzifGi6GpyaIG13GzrPBp#j0AvIBGo4NxGDvbsluM8LxakVqOJsuRc3Lty@@JrLl5BgrNsjJCmO7Ry770oC3rvAQEiYKkaQw2GXGB26oMjFWp2Y09D@h7SCkkhmq#JSeuZEPAM3ET3#3AvHEWvYnbii#Pbnh9n9rodVf0ABaWtbF7Ne8VX1jT6azOa0axbJNkDd5pP8FPd5MwrdhH84GBBZSqJLfft0Jm4zi0HpakriOb6dIhVAPKTmV@ugrGHNC0xdK#mbLpJfvjtytqGNWIyTYYc@RizpvMPnxXDSfPCUg85iExMrC82vc4LpwgUscNfQnxOLJpxyr3ZwoX6LG0zF0cwiUJVqKg4vyNtcYtsXGvj6R4ut6UsEROUXjWJJYC@TIkgduyD7q36qCOL6Z3e#eJ4VH0e2ES94AWLyQCi9NvSEoEilYOAa4M6@2XuD6umHlKs5hdyE9f@#7MjCRarjDP1g@27LHwRKAth606szqCggEMFL3PAGR4PbyOhdn5A6832TQSSathKDZl0dRZO7xDRQa3osoHpQhGLxPrfbri5riuVZhPoB5oZyxZ27Pr0qmWa5wwZhlCFDo5Qw0ydIbongXiP#DVhx1bIUUr0QdHbNnvvlZYDRanWZ@XTTDXikH@ezbyzg4QTzr87cH@y63hrkwpfI3PYD0WhWqOXTGv24YuNquftN0XIw2fnRnPPzZiDEKm6QRwdS7sbRBF5j8VUMStPT88@1er@0sa8ML92jeVywpCiTRas3XN7ToMsegM0IztToN03GXL0NGRY5#0Tn1Q3#nDxglPFJMQY7gK4tYY7QYa9pP4gwToaize26f1Qq2B2EKC02FH88ev7wimsPpivyqlMhD7WLWHecllsunXkfVkSDM7RTZ0S9ZvMVBzdSySzJ3XSoFqhhh#sCWlvQQSe1A3Br6FeL@S5fi#yANQzxV4BBc@MOOqudSYYcGVq4meGJ75kZIUCv7WnxuXiVGUGAOZLsnbkN3T6gQPkPlghTtOiL1yVd4BjUWUAw0nOjPM#5imoKEhFngPJZa4tvH8VVtR7FR0IZIbH3mA@FxWEdl1RccGZ7j6zFliHybgQY1gautPmP2BbFRXdvyf4dWXPWiTjCVfGkflBMnWqC394zCOrLfkJJoLMr8exe4yD3xCgb8eIYaee55LpwQcVN4utvL5OlX8GvN2Tp04J6fdEl8#sIYrlp#LqX8rHgGnpAeYYL1x9KDzZyneNIXEYga0Pw2#eMseFTmyfEREblmeo1dYO3RMn9T12QLbP4wcqNUHKSQPEtGbbm7qkhQD7slnsiOeuDnqQC7YDE0o5MAQQoDA7fT0xkRA14QWA@bNEvSNco@aw5JA3qAsJXsAjlUDPJxltlfFJiZ#mXxqpzbcWFh3FY6LHPwjJa@Fb3o1syHgsaDrSJEcYXoRUUfOwMbv9LhDj05yDC8914IYP1Dk8p81YtOK9C7l3@hHyE7oahPpyRqmdv4n7tbWG7jqK9IqMptCX7LXxjXkhhT9tOVeSGZJhwMLrT3HhxYfyn6hty3OAbLZJ4F7#oK69lOXj6ogwemuOoE2NUFssTh7OzxQXTJl@HkOcdFT0ZXyOQQKeJyW1#LYbhrCxrZKEy@xEDpql2Ukj1FNNXGeoaLwGNvI1bCFBL#WdNaTo5IDYfYWugq4GNXrINouwqT#lEykjGKZdJDaxwLTFaIxUEJF1eCAPfJEmnMd0UAutNCU4h8Or9qcjhSHuIPC0sC1aFOprOFv2dYd6ywxQqSdTVqLDn1FOygCvntZOKBj5a7B7PvnQCcfR9h@csQEtUzcqe860fUobeeL2Mx8rG8YJzeuowyCz92X9cGJWpSbvfnVh5dGY7wT3seb7qOUogY0TeDCW79TURq7teN29YwwMiNUL8Bns35@MHp3ptiOwerDLoLdvtODCGs51Ri1C0kVNOBlWy3#j0XUVmi3cHOPb1CM4WbsHl5F2UnRqgUf8poVl6hdLcP8M3ZuDn2LjuKzghvi3rQE7uz1Q@5zoBPZKYLH3HTQn7YR4RCKiT#s7WxFzwXVFOIILq3n0Y2#fT2t7aBiNYiHxue4P7Lf6foJhTearOxfttxSHb1#z1SwwxUz@L1n@HN2wGMGNuXYB#6lsLBDXIL2Uq0SDTWm6qrlASi637VfZQnfS4ZM@i7CVF0vsruPASeudi4tdLpWdylaR4uyeci9pBnoGXEq9vkq@w04zzeS4PCtzTk4XJAEZ1DsmPuCB7KfK7EDmwhC0QalW6dwLiF@aMjXzM7Q63z7xhx2FHSQPVWRcKJiPj@g60pr5XIbr0Ue32kjDqNiIrFy8fuhRAyOPGgrH@aihMXa4I0cdAQ6xzZTXxJxS5d7yd#yUmebtl4NLPDmHidZdDXhpVF5Awin1A8CXlZ2vwpv8jxvkIX8shh7@Jv3DtApL5LCXafAKewhHymGcuwLDvstMqNbGk8D1y0ubkFtMXn3@ZkGY@KsFvknGA2X37qOf3B#oHeHYPhrJewLvkLsDf6UJhpXPS1Rs@rWPWNtfKktVU0MOCt@V1cigAL7DUoSk6yhrI7ISSkgInVqzlF9VzpBxMJtMpSKs2KcNojlfLnX6a2#7hBtl#mz9TBNcOTQqJLwYHZeARV2vgMuXK0C4OdZgQ9S2fPTfZY2D5uV5JnE6Xcs6LabwDubPvHBoAmAFmc4ohzC4oWSD1EZS5Y1CNxghbq5u@j2rfQSyC2#4iBhv#oFHWbsaetwPlnxAOyS#e87KMrH4RpzzgoAWytS41I7qK@DFPajh9jeKeRUGzmIl7Nn7ayqynQVjVnsJ3HeQSGsllNHj6@TUAC1UAluCbtpjXCyeAw4PvMVHBHnBkIge3tKL2Mi2kduOryuo8NN3G9sK0AyoM3Njkfyw@WKMx$